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A New Perspective for Modeling Traffic Accidents 
Considering Unrecorded Data 

Amr M. Wahaballa 

 

Abstract— There are many factors that expected to affect traffic accidents are not recorded such as driver reaction time and fatigue. If the 

effect of these factors on accident rates cannot be considered, any accident model based on these predictions may be inappropriate. 

However, while observing all accident causes is difficult, the alternate is employing advanced methodologies to extract the effects of 

unrecorded data from the observed one. The goal of this paper is to model accident rates considering the unrecorded data affecting them 

using a model that can be handled for use in real-world practice. For this purpose, the suggested method employed the stochastic frontier 

model that allow estimating two different effects. The effect of the observed factors is related to the frontier and the effect of the unrecorded 

factors is estimated as the inefficiency of the frontier. The method is applied to a real traffic accidents data as a proof of concept. The cost 

frontier function is used to represent the relationship between the accident rate as an output and the pavement width, the percent of trucks 

and the number of access points per kilometer as inputs. Model parameters are estimated by the maximum likelihood method. P-values 

show that all estimated parameters are statistically significant and the estimation proves a quick convergence. Comparing the accident rate 

values estimated by the proposed model versus the actual accident rate values shows a goodness-of-fit determination coefficient of more 

than 95%. The findings reveal that the inefficiency term (which represents the effect of unrecorded factors) has markedly affect accident rate 

values. This result reflects the usefulness of the proposed model and the importance of considering the data that may be unrecorded. 

Keywords— Traffic accidents rate, observed factors, unrecorded factors, modeling, econometric models, stochastic frontier models.   

——————————      —————————— 

1 INTRODUCTION                                                                     

RAFFIC accidents causing loss of life, damage to proper-
ties, and a notable psychological effect on victims and their 
families worldwide. Annually, traffic accidents produce 

more than 50 million injuries and 1.2 million deaths all over the 
world [1]. Decision-makers need accurate information about 
the relationships between accidents and their causes. Develop-
ing accident prediction models can help in predicting accidents 
causes effectively and allow transportation authorities to pro-
vide accurate road safety measures. Therefore, it is the subject 
of several studies all over the world to demonstrate accidents 
causes toward reducing their harmful effects. Traffic accidents 
modeling has been widely studied in the literature using differ-
ent techniques during last decades (e.g., [2]-[19]). Although dif-
ferent methodologies have been employed in accident model-
ing research area, there still numerous basic issues that have not 
been totally addressed such as considering the effect of the un-
recorded factors that affecting accident rates [20]. However, in 
real-world data, there are many factors that affecting accident 
rates are not recorded. Many human factors such as driver’s 
age, gender, and other socioeconomic characteristics can be ob-
served. However, drivers perception and reaction time, stress, 
fatigue, and/or emotional conditions at accident occurrence 
moment, may not be observable. In addition, some environ-
mental conditions in the place of accident occurrence may not 
be recorded.  

 

Omitting the effect of these factors may cause incorrect esti-
mations and consequently, lead to improper accident mitigation 
strategies that may result in more economic and social losses. For 
example, considering driver age as a representative parameter 
for the effect of people age on the accident rate is not accurate 
because of the existence of many embedded factors such as driv-
ers perception and reaction time and body positioning at the time 
of accident occurrence. Considering driver age as one parameter 
omit the effect of these factors that vary across people of the 
same age and affecting accidents because people of the same 
age are likely to have differences in these unrecorded factors 
[20]. There are some researchers dealt with considering the ef-
fect of unrecorded factors on accidents (e.g., [21], [22], [23]). 
They used latent-class models that address the effect of unre-
corded factors by classifying data into homogeneous character-
istics subgroups. However, due to the assumed homogeneous 
characteristics of each subgroup, these models do not consider 
the variation among the observations of the same subgroup 
[20]. Other research such as [13] and [24] have used random-
parameters models that allow variating the parameters among 
observations to consider the effect of unrecorded factors. These 
models may be more complex and have a large number of pa-
rameters which may be costly ineffective in terms of computa-
tional time required instead of few-variables models needed by 
traffic operators. Closing this gap in the literature is the objec-
tive of this paper. 

In a recent research by the author among others [25], the sto-
chastic frontier model is proved to be a simple and successful 
tool for modeling some transportation problems. In this regard, 
this paper suggests a methodology for modeling traffic acci-
dents using stochastic frontier approach. To the best of the au-
thor’s knowledge, this study is one of the first attempts to do 
so. The maximum likelihood estimation of the stochastic fron-
tier model is applied to a real-world accident data in Egypt to 
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illustrate the proposed method. To test the prediction accuracy 
of our model, a long horizon three years accident data on As-
wan-Cairo road was utilized. The statistical analysis will show 
that the results indicate a satisfactory methodology.  

Following this outline, this paper is structured as follows. 
The next section provides a review of the relevant research. Sec-
tion 3 presents the methodology used in this paper. Section 4 
illustrates the application site, data characteristics and develop-
ing the accident model. The frontier model results are discussed 
in Section 5. Finally, Section 6 outlines the main conclusions of 
this research. 

2 LITERATURE REVIEW 

Traffic accidents modeling has been widely investigated in the 
literature using various modeling approaches. Traditional Pois-
son regression model has been used to model the factors affect-
ing accident rates (e.g., [2], [3], [4]). The accident rate is the num-
ber of accidents per the number of vehicles traveled on a road 
section during a certain time interval. However, simple Poisson 
regression model set limits when the mean accident rate is 
much greater than its variance [20]. To overcome these limita-
tions, many researchers such as [5], [6], [7] have used the nega-
tive binomial model or Poisson–Gamma models. A wide meth-
odological progress of traffic accident modeling has been made 
during many decades. Some researchers (e.g., [3], [6]) have used 
zero-inflated Poisson and negative binomial models to model 
traffic accidents in case of no accidents observed in some parts 
of the road. These models considered observations with zero 
accident rate by categorizing the road into two different clus-
ters, a zero accident rate category and a category for observa-
tions that have accident rate values. Other researchers have 
used duration models (e.g., [8], [9], [10]); bivariate and multi-
variate models (e.g., [11], [12], [13]); generalized estimating 
equation models (e.g., [14], [15]); hierarchical/multilevel mod-
els (e.g., [12], [16]) and Poisson-lognormal (or Poisson–Weibull) 
models such as [17], [18], [19]. Artificial intelligence and ma-
chine learning approaches also have been utilized for traffic ac-
cident modeling in the literature (e.g., [26], [27], [28], [29]). An 
extensive review of the various modeling methods that used in 
traffic accident research area can be found in [20] and [30]. 

Although these wide research exist in traffic accident mod-
eling, few researchers investigated the consideration of unre-
corded factors effect. Some studies have tried to address this 
problem in the literature using finite-mixture or latent-class 
models to addressing the effect of unrecorded factors by classi-
fying data into homogeneous characteristics subgroups [21], 
[22], [23]. Finite-mixture or latent-class models based on deter-
mining a finite number of mass points to identify homogeneous 
subgroups of data not just categorizing road sections as in the 
case of zero-inflated Poisson models by [3] and [6]. These mod-
els can be performed without any distributional assumptions 
for the variations of parameters across subgroups. However, 
due to the assumed homogeneous characteristics of each sub-
group, these models do not consider the variation among the 
observations of the same subgroup [20]. Other research such as 
[13] and [24] have used random-parameters models that allow 
variating the parameters among observations to consider the 

effect of unrecorded factors. These models can address the var-
iation of parameters across the observations of different road 
sections and/or across any number of different groups of the 
data. Later, [42] developed a model that incorporating random 
parameters within a finite-mixture model. Although their 
model considers the variations among subgroups and the het-
erogeneity within each subgroup, this model may be more com-
plex and has a large number of variables that may be computa-
tionally inefficient.  

Previous research shows that due to limited data availability 
of many variables known to be significantly affecting accident 
rates, and the need to develop a simplified models containing 
few explanatory variables, advanced statistical methodologies 
are needed to satisfy the balance between these tradeoffs (sim-
ple model provides operators needs versus considering the ef-
fect of most affecting factors including unrecorded ones). Re-
cently, the stochastic frontier model as detailed in the next sec-
tion has used in different transportation models. For example, 
it was used to define travel time frontiers (or travel time budg-
ets) e.g., [32], and for investigating the relationship between 
time expenditures and time budgets and its impact on episodic 
well-being measures using survey data [33]. Canavan et al. [34] 
have used the stochastic frontier approach to model the effect 
of the frequencies of delay incidents on the efficiency of a metro 
rail system.  Wahaballa et al. [25] highlighted the superiority of 
the stochastic frontier model for estimating the platform wait-
ing time on London underground based on smart card data. 
This paper suggests that the stochastic frontier model may be 
useful for modeling traffic accidents considering the effect of 
unrecorded data. 

3 METHODOLOGY 

This paper suggests that the factors affecting accident rates can 
be classified into two groups: one which is observable, and re-
lates to the observed possible factors affecting accident rates, 
and another that is based on some factors known to signifi-
cantly affect accident rates, however, may not be available, or 
other unexpected factors linked to environmental or human 
factors. The effect of these two groups of factors on accident 
rates can be treated differently. From the econometric point of 
view, this paper employs the stochastic frontier techniques to 
distinguish these factors. Observed accident causes determine 
a lower frontier measuring the minimum accident rates repre-
senting the unavoidable accident rates under current condi-
tions (without implementing any improvements). While the ac-
tual accident rates will exceed that minimum, the difference can 
be related to unrecorded factors or unexpected human factors, 
for example. Therefore, that difference is modeled as the “inef-
ficiency” term of the stochastic frontier model (SFM).  

The SFM is a model used for the analysis of economic effi-
ciency by estimating the production or the cost [35]. It is an ex-
tension of a regression model in which a production (cost) func-
tion represents the ideal maximum output attainable (the min-
imum cost of producing that output) given a set of inputs. The 
general formulation of the SFM is presented here without de-
tailing the derivation of the corresponding criterion functions, 
for more details the reader can refer to [36]. The main idea of

IJSERIJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 8, Issue 8, August-2017    1488 
ISSN 2229-5518 

IJSER © 2010 

http://www.ijser.org  

the SFM is that no economic agent can exceed the ideal (fron-
tier) and the deviations from this extreme represent the individ-
ual inefficiencies. The main advantage of the SFM is the ability 
to introduce a disturbance term consisting of two different error 
types, noise, and inefficiency, to separate the effects of random 
noise from the inefficiency. This is achieved by developing a re-
gression model contains a composite error term in which the 
measurement error and any other classical noise are included 
together with a one-sided disturbance error term representing 
the inefficiency. 

In production-related applications, the uncontrollable fac-
tors of the production unit, such as faulty machinery and break-
downs, are considered as noise. The errors that come from the 
non-optimal use of technology are captured by the technical in-
efficiency term. Therefore, in this application, the SFM can be 
used to represent the unknown/unrecorded factors that affect 
accident rates, by a distribution different from the observed 
possible factors affecting them. The latter distributions can be 
assumed to be classical noise while the unrecorded factors can 
be considered a one-sided disturbance error term. The SFM cost 
minimization function is formulated as follows: 

 
𝑦𝑖 = 𝜷𝑻𝒙𝒊 + 𝜀𝑖 (1) 
where  
𝜀𝑖 = 𝑦𝑖 − 𝜷𝑻𝒙𝒊 = 𝑣𝑖 + 𝑢𝑖 (2) 

 
𝑦𝑖  and xi represent the output (cost) and the inputs of the ith 

productive unit, respectively, and β is a vector of the unknown 
frontier parameters (fixed for all i). The composed error term ɛi 
is the sum of the random noise (vi) and inefficiency (ui). The 
maximum likelihood method can be used for estimating the 
frontier model parameters. The estimation of the inefficiency 
scores is recovered in a second step by applying the estimator 
developed by Jondrow et al. [37], which is based on the infor-
mation on ui contained in the overall residual [38]. This estima-
tion requires some assumptions for the components of the error 
term as follows [38]: 

 ui and vi are assumed to be independent and identically 
distributed (IID) across observations and are independ-
ent of each other. 

 vi is a two-sided normal distribution N(0; 𝜎𝑣
2 ). 

 ui is a nonnegative random term that follows a one-
sided distribution.  

The distribution of the inefficiency component has been 
mostly specified in the relevant literature as being half-normal, 
exponential or truncated normal. In this paper, the cost frontier 
function defines the relationship between the accident rate as 
an output and the pavement width, the shoulder width, the per-
cent of trucks and the number of access points per kilometer as 
normally distributed inputs. This assumption simplifies esti-
mating the parameters of the unrecorded factors distribution. 
Given the additive property of the normal distributions, as the 
observed factors are normally distributed, their sum is also a 
normal distribution. The variance of the summated normal dis-
tribution of the pavement width, the shoulder width, the per-
cent of trucks and the number of access points per kilometer is 
considered as the noise. For the inefficiency, representing the 
unrecorded factors, the half normal and the exponential distri-
butions are tested. The inefficiency error term can be estimated 

based on a vector of variables (Z) as follows [39]: 
  

𝑢𝑖 = 𝑍𝒊 𝜑 + 𝜔𝑖  (3) 
 
Where φ is a vector of parameters to be estimated, and ωi is 

a random variable which comes from the half normal or expo-
nential distribution. The constraint ωi ≥ -Zi φ should be attained 
to satisfy a positive value for the random disturbance related to 
the inefficiency. The derivation of the likelihood function as-
sumes independence between ui and vi. Since the composite er-
ror term ɛi is vi + ui, its probability density function is the con-
volution of the two component densities. The log-likelihood 
function for the normal/exponential cost frontier based on the 
output 𝑦𝑖 can be obtained from the joint probability density 
function (pdf) of (ui, vi) using the transformation ɛi = 𝑦𝑖 −𝜷𝑻𝒙𝒊 
as follows [36]:  
 

𝑙𝑛 𝐿(𝛽, 𝜎𝑢) = ∑ {−𝑙𝑛𝜎𝑢 +
𝜎𝑣

2

2𝜎𝑢
2

+ 𝑙𝑛𝛷 (
𝜀𝑖 −

𝜎𝑣
2

𝜎𝑢

𝜎𝑣

) −
𝜀𝑖

𝜎𝑢

}

𝑛

𝑖=1

 

(4) 
 
 
Where 

𝛽 : the unknown parameters to be estimated (fixed for all 
observations). 

𝜎𝑢 : the standard deviation of the unrecorded factors dis-
tribution to be estimated. 

𝜎𝑣
2 : the sum of variances of the pavement width, the 

shoulder width, the percent of trucks and the number 
of access points per kilometer. 

𝛷() : the cumulative distribution function of the standard 
normal distribution. 

𝜀𝑖 : the error term for observation i (= 𝑦𝑖 − 𝜷𝑻𝒙𝒊). 
n : the total number of accident observations. 

 
For the normal/half normal cost frontier, the log-likelihood 

function is [36]:  
 

𝑙𝑛 𝐿(𝛽, 𝜎𝑢) = ∑ {
1

2
𝑙𝑛 (

2

𝜋
) − 𝑙𝑛𝜎 + 𝑙𝑛𝛷 (

𝜀𝑖𝜆

𝜎
) −

𝜀𝑖
2

2𝜎2
}

𝑛

𝑖=1

  

(5) 

Where 𝜆 =
𝜎𝑢

𝜎𝑣
  and  𝜎 = √𝜎𝑢

2 + 𝜎𝑣
2 . 

The maximum likelihood estimation for the stochastic fron-
tier model allows β, φ, 𝜎𝑣

2 and 𝜎𝑢
2 to be estimated jointly.
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4 APPLICATION 

The illustrated method of the likelihood maximization of the 
stochastic frontier model is applied to a real traffic accidents 
data. The characteristics of the study site and data with a de-
tailed description of the developed model's structure are dis-
cussed in the following subsections. 

4.1 Study Site and Data 

Upper Egypt rural roads data is used in this analysis. More spe-
cifically, the first hundred kilometers of Aswan-Cairo agricul-
tural rural road are analyzed to model traffic accidents fre-
quency. Accident data used in this study was obtained from the 
recorded data in the General Authority for Roads, Bridges, and 
Land Transport (GARBLT) operated by the Egyptian govern-
ment [40]. The sample size is 108 accidents occurred during 
three years period. The data records the accident time, location, 
annual average daily traffic on accident location, weather con-
ditions at the time of accident occurrence, type of accident (sin-
gle vehicle, front to front, front to back, etc.), type of car and 
other information. In addition, observations of pavement 
width, shoulder width, the percentage of trucks on accident lo-
cation and the number of access roads per kilometer are availa-
ble. The accident rate (AR) is expressed as accident per million 
vehicles kilometers (A/mvkm) for a road section as follows:  

 
𝐴𝑅 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 ∗ 106/(𝐴𝐴𝐷𝑇 ∗ 365 ∗ 𝑁 ∗ 𝐿) (6) 
 

Where AADT is the annual average daily traffic, N is the 
number of years considered and L is the section length in kilo-
meters. The average accident rate among the studied locations 
during the studied three years is 0.93 accident per million vehi-
cles kilometers. Descriptive statistics of the collected data for all 
variables are shown in Table 1. 

4.2 Modeling 

The cost frontier function is used to define the relationship be-
tween the accident rate as an output and the pavement width 
(PW), the shoulder width (SW), the percent of trucks (TR) and the 
number of access points per kilometer (NA) as inputs. All of these 
variables were introduced sequentially in order to test the separate 
effect of variables on accident rates and the significance of different 
variables on the prediction efficiency. STATA software package 

[41], is used for estimating the SFM, which is included in the 
graphical user interface of STATA 13. Maximization of the log-like-
lihood function is performed by iterating the numerical procedure 
by switching between the Newton-Raphson (NR) and Broyden-
Fletcher-Goldfarb-Shanno (BFGS) methods up to the convergence 
of the maximization. Different models are performed. First, the 
paved width (W) input is represented by one parameter (the sum 
of PW and SW). Second, the paved width is separated into two in-
puts PW and SW to consider the difference between the character-
istics and the roles of pavement width and shoulder width on ac-
cident frequency. Additionally, feeding the model with the noise 
error (vi) as a known parameter representing the sum of the vari-
ances of PW, SW, TR, and NA is tested. For the inefficiency term, 
representing the unrecorded factors, the half normal and the expo-
nential distributions are tested. As shown in Table 2, four models 
for each distribution (the half normal and the exponential distribu-
tions) are tested. 

TABLE 1 

DESCRIPTIVE STATISTICS FOR THE COLLECTED DATA 

Variable Min. Max. Mean St. Dev. 

Accident rate (A/mvkm) 0.387 3.048 0.932 0.673 

Pavement width (m) 8.25 12.20 10.10 0.844 

Shoulder width (m) 0.00 2.75 1.487 0.544 

Percent of trucks 15.0% 29.0% 20.6% 5.85% 

Number of access points 
per kilometer 

0.00 12.00 1.87 2.67 

 

TABLE 2 

SPECIFICATIONS OF THE TESTED SFMS 

Model Specifica-
tions 

Input Noise Error (vi) 

Estimating 

Noise  

Error (vi) 

One independ-
ent variable for 
paved width 
X1i =Wi 
X2i =TRi 
X3i =NAi 

Model 1 
(𝝈𝒗𝒊

𝟐 = 𝝈𝑾
𝟐 + 𝝈𝑻𝑹

𝟐 + 𝝈𝑵𝑨
𝟐 ) 

Model 2 

Two independ-
ent variables 
for pavement 
width and 
shoulder width 
X1i  = PWi 
X2i = SWi 
X3i =TRi 
X4i =NAi 

Model 3 
(𝝈𝒗𝒊

𝟐 = 𝝈𝑷𝑾
𝟐 + 𝝈𝑺𝑾

𝟐 + 𝝈𝑻𝑹
𝟐

+ 𝝈𝑵𝑨
𝟐 ) 

Model 4 

One independ-
ent variable for 
paved width 
X1i =Wi 
X2i =TRi 
X3i =NAi 

Model 1 

(𝝈𝒗𝒊
𝟐 = 𝝈𝑾

𝟐 + 𝝈𝑻𝑹
𝟐 + 𝝈𝑵𝑨

𝟐 ) 
Model 2 

Two independ-
ent variables 
for pavement 
width and 
shoulder width 
X1i  = PWi 
X2i = SWi 
X3i =TRi 
X4i =NAi 

Model 3 
(𝝈𝒗𝒊

𝟐 = 𝝈𝑷𝑾
𝟐 + 𝝈𝑺𝑾

𝟐 + 𝝈𝑻𝑹
𝟐

+ 𝝈𝑵𝑨
𝟐 ) 

Model 4 
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5 RESULTS 

5.1 Analysis of Estimates 

As shown in Table 3, the four developed models (for both nor-
mal/exponential and normal/half normal models) are fitted and 
compared based on the Likelihood Ratio test (LR), Akaike's Infor-
mation Criterion (AIC) and Bayesian Information Criterion (BIC) 
methods (the values of the superior model are highlighted in bold). 
Based on the AIC and BIC values, for the normal/half normal 
SFMs, Model 2 is better than Models 1, 3 and 4. However, the LR, 
value suggests that Model 1 is also superior to Models 3 and 4 and 
having the same LL as Model 2. For normal/exponential SFMs, 
both AIC and BIC prove that Model 1 is superior to Models 2, 3 
and 4. This result (the superiority of Models 1 and 2 over Models 3 
and 4) shows that splitting the paved width into two separate in-
puts has not a strong effect on the model performance. This may 
be due to the characteristics of the studied road which has a paved 
shoulder (with an average width of 1.5 m as shown in Table 1) that 
can be utilized as a paved lane in case of any vehicles defects. In 
the case of unpaved shoulders or shoulders with a level different 
from road level, the separation of PW and SW may be more signif-
icant.  

As shown in Table 4, comparing the two superior models, 
Model 2 of the normal/half normal SFMs and Model 1 of the nor-
mal/exponential SFMs, it is found that Model 1 of the normal/ex-
ponential SFMs performs better. This result suggests that assum-
ing the unrecorded factors to follow an exponential distribution is 
useful for modeling traffic accidents frequency using the SFM. The 
superior model reached, Model 1 of the normal/exponential 
SFMs, proved the significance of entering the variability of pave-
ment width, the percent of trucks and the number of access points 
per kilometer into the frontier model as an expected noise error. 
Feeding the model with some expected errors are found to be use-
ful for improving model prediction efficiency and decreasing com-
putation time.  

The statistical properties and the estimated parameter values 
for Model 1of the normal/exponential SFMs are shown in Table 

5. P-values show that all parameters are statistically significant. 
It can be noted that the additional mean accident rate due to the 
unrecorded factors (equals the standard deviation of the ineffi-
ciency term exponential distribution shown in the last row of 
Table 5) is 0.534 A/mvkm. This value highlights the importance 
of such models that considering this notable effect (given an ac-
tual average accident rate of 0.93 A/mvkm as shown in Table 
1). This appears reasonable given a variety of unrecorded fac-
tors that expected to affect traffic accidents rate. The percent of 
trucks is proportionally correlated to the traffic accident rates. 
This matches experts expectations because Aswan city has 
many important raw materials such as granite and the clay used 
for the ceramics industry. However, all factories are located in 
Cairo which develops an increased trucks percent in the stud-
ied road section of an average 10 meters width.  Whether this 
factor is indeed significant to be correlated to accident rates 
with releasing some other factors should be confirmed with fur-
ther data analysis. Although the coefficients of W and NA are 

TABLE 3 

MODELS COMPARISON 

Models 

LR 

chi2(1) 

 

Prob. 

> chi2 
LL AIC BIC 

Model 1 -26.25 64.50 75.47 

Model 2 -26.25 62.50 71.64 

Model 3 -25.95 65.89 78.69 

Model 4 -25.95 63.89 74.87 

Model 1 -17.11 42.22 49.53 

Model 2 -17.00 43.99 53.13 

Model 3 -16.70 47.39 60.19 

Model 4 -16.70 45.39 56.37 

 

TABLE 4 

COMPARING HALF NORMAL VERSUS EXPONENTIAL MODELS 

Model 

LR 

chi2(1) 

 

Prob. > 
chi2 

LL AIC BIC 
N

o
rm

a
l 

/
 

H
a

lf
 N

o
r-

m
a

l 

M
o

d
el

 2
 

-26.251 62.50 71.64 

N
o

rm
a

l 
/

 

E
x

p
o

n
en

ti
a

l 

M
o

d
el

 1
 

-17.110 42.22 49.53 

 

 

TABLE 5 

SUPERIOR SFM RESULTS 

Parameters Coefficient 
p-value 

(Std. Err.) 

Total road width (𝛽𝑊) 0.0192 
0.00 

(0.000) 

Percent of trucks (𝛽𝑇𝑅) 0.8499 
0.00 

(0.002) 

Number of access points 

(𝛽𝑁𝐴) 
5.96*10-9 

0.00 

(0.000) 

Inefficiency error term (𝜎𝑢) 0.534 
0.00 

(0.079) 
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small, these factors still statistically significant and improving 
the model estimation as appears from their P-values shown in 
Table 5. Noting, however, that this effect is also assured by fol-
lowing the sequential addition of the variables to the SFM as 
discussed in Section 4.2. The considered variables are all statis-
tically significant, improving the prediction accuracy and 
providing quick likelihood estimation convergence. The re-
sulted model reached a likelihood maximization convergence 
after 37 iterations within few seconds. 
 

5.2 Model Validation 

The coefficient of determination (R2) measures the extent of the 
fluctuation in the variance of the dependent variable based on 
the values that predicted by a model [42]. The higher this meas-
ure (ranging from 0 to 1), the closer the modeled results are to 
the actual values. The dependent variable (the actual observed 
accident rate) is predicted from the accident rate values that cal-
culated by the proposed model. Note that the R2  value does not 
reflect the extent to which any particular independent variable 
is correlated with the accident rate. Fig. 1 shows the estimation 
efficiency of Model 1 of the normal/exponential SFMs by com-
paring the accident rate values estimated by the model with the 
observed values. The obtained R2 of 0.9558 implies that the pro-
posed model explains about 95.6% of the variation in prediction 
results, which is fairly good. Another validation criterion for 
the model is the heteroscedasticity test. The heteroscedasticity 
is the test for homogeneity of variance of the residuals. The het-
eroscedastic condition is related to a non-constant variance of 
the residuals.  While a well-fitted model is non-heteroscedastic 
and shows a weak correlation pattern and high scattered plot 
between the residuals and the fitted values.  To demonstrate 
that the model is non-heteroscedastic, the residuals versus fit-
ted values are plotted utilizing STATA [41]. The heteroscedas-
ticity plot of the model with a reference line y = 0 shows there 
is no pattern between the residuals and the fitted values, thus 
the model is not heteroscedastic as shown in Fig. 2. 

 

6   SUMMARY AND CONCLUSION  

Various approaches have been proposed in the literature to 
model traffic accidents. However, many factors that expected to 
affect accident rates are not recorded such as some human and 
environmental factors. A recent research that extensively re-
viewed accident analyses, recommended that considering the 
effect of these unrecorded factors in accident modeling has not 
been totally addressed in the literature [20].  In another hand, 
transport authorities operators need simplified models with 
few possible variables that can be handled for use in real-world 
practice. In this regard, the main goal of this paper is to model 
traffic accident rates in a simple statistical framework having a 
relatively few number of variables and parameter estimates 
with considering the effects of unrecorded factors. To achieve 
this, it is suggested that the stochastic frontier approach can be 
used for modeling traffic accident rates. An advantage of the 
frontier approach is enabling a prediction of the effect of the 
observed factors which are linked to the frontier, while the in-
efficiency of the frontier represents the effect of the unrecorded 
factors. In the proposed methodology, the reliability of the ob-
served variables is considered as the noise error of the frontier 
model that modeling their effect on accident rates. In addition, 
the effect of the unrecorded factors is estimated simultaneously 
as a separate error term of the frontier model. This method en-
ables differentiating between the characteristics and the effect 
of those factors.  

As a proof of concept, the proposed method is applied to Up-
per Egypt rural roads using real traffic accidents data during 
three years period. The model parameters are estimated by the 
maximum likelihood method. Parameter values are estimated 
with a reasonable p-value for all the studied variables which 
indicate the significance of the model with a goodness-of-fit de-
termination coefficient of more than 95%. A notable accident 
rate related to the unrecorded factors was found which reflects 
the usefulness of the proposed model that considering such ef-
fect. This seems logic according to the possibility of different 
unrecorded factors that expected to affect traffic accident rate. 
A notable effect of the percentage of trucks on accident rates

 

Fig. 2 Heteroscedasticity test 

 

Fig. 1 Actual versus predicted accident rate values 
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was found which matches the expectation of the experts based 
on the characteristics of the studied site [40]. The model con-
verges fast, which is an important advantage of this model for-
mulation. This allows certain interesting descriptive statistics 
that may help practitioners to test the effectiveness of accident 
mitigation measures in a simple framework. The main disad-
vantage of the stochastic frontier model is the distributional as-
sumption required to estimate the parameters. Assumed distri-
butions may not fit other data characteristics. Nevertheless, as-
suming the noise error as a normal distribution and the ineffi-
ciency error to follow the exponential distribution is found suit-
able for the studied data.  Whether these distributional assump-
tions is indeed significant for other datasets should be con-
firmed with further data analysis. The normality assumption of 
the observed factors provided a simplified way to estimate the 
parameters of the unrecorded factors distribution in this paper.  

 In future work, a larger sample size containing more ob-
served affecting factors is needed. Therefore, a sensitivity anal-
ysis of the accident rate records depending on the different fac-
tors can be performed. Then, some factors can be excluded from 
the model and re-estimated to validate the method proposed in 
this paper. An important further aim is to expand the proposed 
model to obtain the distributions of both observed and unob-
served factors that affecting accident occurrence. 
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